CCIT Report #889 November 2015

Multi scatter, Multi view Monte Carlo radiative transfer

Vadim Holodovsky,^{1*} Yoav Y. Schechner,¹ Anat Levin,² Aviad Levis,¹ Amit Aides,¹

> ¹Dept of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel

²Dept of Mathematics and Computer Science, Weizmann - Institute of Science, Rehovot, 76100 Israel {vholod@tx.technion.ac.il}

november 10, 2015

1 Theoretical background

Extinction: Radiance is a flow of photons. Light propagation through the atmosphere is affected by interaction with air molecules and aerosols (airborne particles). Atmospheric constituents have an *extinction cross section* for interaction with each individual photon. Per unit volume, the *extinction coefficient* due to aerosols is $\beta^{\text{aerosol}} = \sigma^{\text{aerosol}} n$. Here σ^{aerosol} denotes aerosol extinction cross section and n denotes particle density. The total extinction is a sum of the aerosol and molecular contributions, $\beta = \beta^{\text{aerosol}} + \beta^{\text{air}}$, where β^{air} is modeled as a function of altitude and wavelength λ [5]. The *optical depth* along a photon path S is

$$\tau = \int_{S} d\tau = \int_{S} (\beta^{\text{aerosol}} + \beta^{\text{air}}) dl = \int_{S} (\sigma^{\text{aerosol}} n + \beta^{\text{air}}) dl = \tau^{\text{air}} + \int_{S} \sigma^{\text{aerosol}} n dl , \qquad (1)$$

where $\tau^{\text{air}} = \int \beta^{\text{air}} dl$. Through a non-scattering atmosphere, the *transmittance* exponentially decays with the optical depth:

$$t = \exp(-\tau) . \tag{2}$$

Scattering: Suppose that a photon interacts with a single particle. The unitless single scattering albedo ϖ of the particle, determines a probability for scattering. The aerosol single scattering albedo is ϖ^{aerosol} . The scattering coefficient due to aerosols in the volume is $\alpha^{\text{aerosol}} = \varpi^{\text{aerosol}}\beta^{\text{aerosol}} = \varpi^{\text{aerosol}}\sigma^{\text{aerosol}}n$. For non-isotropic scattering, an angular function defines the probability of photons to scatter into each direction. Let $\omega, \psi \in \mathbb{S}^2$ (unit sphere) represent photon or ray directions. The fraction of energy scattered from direction ψ towards direction ω is determined by a phase function $P(\omega \cdot \psi)$. The phase function is normalized: its integral over all solid angles is unity, and is often approximated by a parameteric expression. Specifically, the Henyey-Greenstein function, parameterized by an anisotropy parameter $-1 \geq g \geq 1$, can approximate aerosol scattering [5]